API

Modules

Types and constants

Functions and macros

Documentation

FunctionChains.AsFunctionType
struct FunctionChains.AsFunction{F} <: Function

Wraps a callable object to make it a Function.

User code should typically not instantiate AsFunction objects directly, but use asfunction(f) instead.

source
FunctionChains.FFanoutType
struct FFanout{FS}<:Function

Represents a function fanout.

Use`AFFanouthas a single fieldfswhich may be aTuple,NamedTuple`, an array or a generator/iterator of functions.

Use ffanout to construct a function fanout instead of using the constructor FFanout(fs) directly.

source
FunctionChains.FunctionChainType
struct FunctionChain{FS}<:Function

Represents a chain of composed functions.

(fc::FunctionChain)(x) applies the functions in the chain in order of iteration over fc._fs.

Use fchain to construct function chains instead of using the constructor FunctionChain(fs) directly.

Use fchainfs(fc) to retrieve the components of a FunctionChain in order of function execution.

source
FunctionChains.:∘̂Method
∘̂(f, n::Integer)
f∘̂ n

Create a chain of function f repeated n times, with support for n <= 0.

The type of the returned function depends on n:

  • n == 0: return identity
  • n == 1: return f
  • n > 1: return frepeat(f, n)
  • n == -1: return InverseFunctions.inverse(f)
  • n > -1: return frepeat(InverseFunctions.inverse(f), -n)
source
FunctionChains.applyfFunction
applyf(f, xs...) = f(xs...)

Function application: Apply a function f to one or multiple arguments.

Primarily useful to broadcast collections of function over collections of arguments, e.g. applyf(fs, as, bs, ...) or to calculate derivatives in respect to function parameters (closure contents), e.g. Zygote.gradient(applyf, f_withargs, xs...).

source
FunctionChains.asfunctionFunction
asfunction(f)::Function
asfunction(f::Function) === f

Wraps a callable f to make it a Function.

If f isa Function, simply returns f. If f is A type (constructor), returns a properly typed function object.

source
FunctionChains.fbcastFunction
fbcast(f)

Return a broadcasted version of the function f, so that fbcast(f)(A, ...) is semantically equivalent to f.(A, ...).

fbcast(f)(A) is also semantically equivalent to fcprod( Fill(f, size(A)) )(A).

Typically returns a Broadcast.BroadcastFunction, but may be specialized to return broadcasted implementations depending on the type of f. For example, fbcast(identity) === identity.

The resulting broadcasted function supports InverseFunctions.inverse and/or ChangesOfVariables.with_logabsdet_jacobian if f does so.

source
FunctionChains.fchainFunction
fchain()
fchain(fs)
fchain(fs...)

Construct a function chain of functions fs.

Typically returns a FunctionChain, but may be specialized to return other function chain types for specific types of functions.

fs must be iterable, it may be a tuple, vector, generator, etc. fchain(fs)(x) will apply the functions in fs in order of iteration.

The resulting function chain supports with_intermediate_results, and also supports InverseFunctions.inverse and/or ChangesOfVariables.with_logabsdet_jacobian if all functions in the chain do so.

Use fchainfs(fc) to retrieve fs.

source
FunctionChains.fchainfsFunction
fchainfs(fc)

Get the component functions of a function chain or composed function fc, in order of function execution.

See fchain for details.

source
FunctionChains.fcompFunction
fcomp()
fcomp(fs)
fcomp(fs...)

Construct a composition of the functions fs that is semantically equivalent to fs[1] ∘ fs[2] ∘ ... and fchain(reverse(fs)).

The resulting function composition supports with_intermediate_results, but note that the intermediate results are in order of function evaluation, not in the order of the functions in fs.

The composition also supports InverseFunctions.inverse and/or ChangesOfVariables.with_logabsdet_jacobian if all functions in the composition do so.

source
FunctionChains.fcprodFunction
fcprod()
fcprod(fs)
fcprod(fs...)

Construct the Cartesian product of functions over the functions fs.

Typically returns a FCartProd, but may be specialized to return other product function types for specific types of element functions.

fs must be iterable, it may be a Tuple, NamedTuple, an array or a generator/iterator of functions.

fcprod behaves like

fcprod((f_a, f_b, ...))((x_a, x_b, ...)) = (f_a(x_a), f_b(x_b), ...)
fcprod((a = f_a, b = f_b, ...))((a = x_a, b = x_b, ...)) = (a = f_a(x_a), b = f_b(x_b), ...)
fcprod([f_a, f_b, ...])([x_a, x_b, ...]) = [f_a(x_a), f_b(x_b, ...)]

This is similar, semantically, to Haskell's *** for arrows.

For fp = fcprod(fs), use fcprodfs(fp) to retrieve fs.

The resulting product of functions supports InverseFunctions.inverse and/or ChangesOfVariables.with_logabsdet_jacobian if all functions in the product do so.

source
FunctionChains.ffanoutFunction
ffanout()
ffanout(fs)
ffanout(fs...)

Construct a function fanout with the functions fs.

This is similar, semantically, to Haskell's &&& for arrows.

Typically returns a FFanout, but may be specialized to return other function fanout types for specific types of element functions.

fs must be iterable, it may be a Tuple, NamedTuple, an array or a generator/iterator of functions.

The resulting function fanout behaves like

ffanout((f_a, f_b, ...))(x) = (f_a(x), f_b(x), ...)
ffanout((a = f_a, b = f_b, ...))(x) = (a = f_a(x), b = f_b(x), ...)
ffanout([f_a, f_b, ...])(x) = [f_a(x), f_b(x, ...)]

For ff = ffanout(fs), use ffanoutfs(fc) to retrieve fs.

source
FunctionChains.frepeatFunction
frepeat(f, n::Integer)

Create a chain of function f repeated n times.

See also ∘̂(f, n) for a version that supports n <= 0.

The resulting function chain supports InverseFunctions.inverse and/or ChangesOfVariables.with_logabsdet_jacobian if f does so.

source